For AQA ## **Mathematics** Paper 1 (Non-Calculator) **Higher Tier** Churchill Paper 1A – Marking Guide Method marks (M) are awarded for a correct method which could lead to a correct answer Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied (B) marks are awarded independent of method Written by Shaun Armstrong This paper is part of a product for use in the single school or college that has purchased the licence. However, this paper is available as a sample that can be used without licence. ## Churchill Paper 1A Marking Guide - AQA Higher Tier - 4 - 5 - 6 6.5 - В1 - Total 1 Total 1 2 $$3\frac{1}{2} \times £10 = £35$$ $$3\frac{1}{2} \times 60p = £1.80 + £0.30 = £2.10$$ $$3\frac{1}{2}$$ × £10.60 = £35 + £2.10 = £37.10 × 3 - £31.80 - £35.30 - £36.80 - £37.10 В1 - 3 2 6 18 54 - ×3 ×3 Next term = $3 \times 54 = 162$ 2916 - 72 - 162 - 166 - B1 - Total 1 - $\div \frac{1}{2} = \frac{3}{10} \times \frac{2}{1} = \frac{6}{10} = \frac{3}{5}$ 4 - 3 20 - $1\frac{1}{5}$ B1 Total 1 - 5 1 chain costs $180 \div 20 = £9$ (a) - 1 bead costs $750 \div 500 = £1.50$ 1 spacer costs $90 \div 100 = £0.90$ 1 heart charm costs $120 \div 30 = £4$ Total = $$9 + (8 \times 1.50) + (4 \times 0.90) + 4$$ $$= 9 + 12 + 3.60 + 4$$ $$=$$ £28.60 M1 M1 M1 Profit on 1 bracelet = 39.90 - 28.60 = £11.30(b) Profit on 15 bracelets = 15×11.30 $$= 10 \times 11.30 + 5 \times 11.30$$ $= 113 + 56.50$ $$=$$ £169.50 6 The angles in a triangle add up to 180° so $$4x + 3x + 20 + 5x - 8 = 180$$ $$12x + 12 = 180$$ $$12x = 168$$ $$x = 14$$ M1 4x = 56, 3x + 20 = 62 and 5x - 8 = 62 As angle ABC = angle ACB the triangle is isosceles The two sides opposite the equal angles are the same length Hence, AB = AC Α1 Total 4 Total 5 | 7 | (a) | = 7 × 6 = 42 ways | | B1 | | |----|---|--|----|----------------|--------------| | | (b) | Smallest 2 frame sizes:
no. of combinations = $2 \times 7 \times 3 = 42$
Largest 3 frame sizes: | | M1 | | | | | no. of combinations = $3 \times 7 \times 6 = 126$
Total no. of combinations = $42 + 126 = 168$ | | A1 | Total 3 | | 8 | (a) | e.g. She can not be sure of this because 10 is a very small number of trials | | B1 | | | | (b) | No. of times red bead picked = $7 + 6 + 8 + 6 = 27$
No. of trials = 40 | | M1 | | | | | P(Faria picks a red bead) = $\frac{27}{40}$ | | A1 | | | | (c) | No, she is wrong. | | | | | | | We know the probability that one bead will be green is $\frac{6}{10}$. | | | | | | | However, we don't know the probability that the second will
be green, given that the first was green, because we don't
know how many beads are in the bag. Her answer assumes
that the bag contains 10 beads so that after removing one | | | | | | | green bead there are 9 beads left, 5 of which are green. | | B2 | Total 5 | | 9 | p + . | $ \begin{array}{c} 4q - 7 \\ 7 = 4q \\ \underline{p + 7} \\ 4 \end{array} $ $ 7p - 4 \qquad \frac{p}{4} + 7 \qquad p + \frac{7}{4} $ | B1 | Tota | ı l 1 | | 10 | (a) | Jeremy marks 1 homework in 60 ÷ 12 = 5 minutes Kira marks 1 homework in 120 ÷ 30 = 4 minutes Liz marks 1 homework in 6 minutes Therefore Kira is the quickest | | M1
A1 | | | | (b) In 20 minutes Jeremy marks 4 homeworks and Kira marks 5 homeworks Together they mark 9 homeworks in 20 minutes $36 \div 9 = 4$ so they take $4 \times 20 = 80$ minutes $4.30 \text{ pm} + 80 \text{ minutes} = 5.30 \text{ pm} + 20 \text{ minutes} = 5.50 \text{ pm}$ They finish marking at 5.50 pm | | | M1
M1
A1 | Total 5 | | 11 | Last | week = 100%
week = 120% = 240 | | | | 12 Angle in semi-circle = 90° a = 180 - (90 + 38) a = 52 38 **52** 58 62 B1 Total 1 13 2 + 3 = 5 $600 \div 5 = 120$ $2 \times 120 = 240$ 120 200 240 250 B1 Total 1 14 (a) Number of orders (N) Cum. Freq. $40 < N \le 45$ 4 $40 < N \le 50$ 21 $40 < N \le 55$ 54 $40 < N \le 60$ 79 $40 < N \le 65$ 99 $40 < N \le 70$ 113 $40 < N \leq 75$ 120 M1 A1 100 Cumulative Frequency 80 60 70 80 Number of orders (c) 42 (approx, from graph) В1 Total 6 Radius of inner circle = $10 \div 2 = 5$ 15 Area of inner circle = $\pi \times 5^2 = 25\pi$ Radius of outer circle = distance from centre to corner of square: **B1** Pythagoras': $r^2 = 5^2 + 5^2 = 25 + 25 = 50$ M1 Area of outer circle = $\pi \times 50 = 50\pi$ Shaded area = $50\pi - 25\pi = 25\pi$ M1 Therefore shaded area = area of inner circle Total 4 Α1 16 In a normal week, let Henrik earn h and Rob earn r h: r = 3: 2 so $h = \frac{3}{2}r$ h + 20 : r + 20 = 4 : 3 so $h + 20 = \frac{4}{3}(r + 20)$ M1 **B1** 3(h + 20) = 4(r + 20)3h + 60 = 4r + 80 (2) $3 \times \frac{3}{2}r + 60 = 4r + 80$ Sub (1) into (2) M1 $\frac{9}{2}r + 60 = 4r + 80$ $\frac{1}{2}r = 20$ r = 40 so, $h = \frac{3}{2} \times 40 = 60$ In the week before Christmas, Henrik earns h + 20 = £80 **A1** Total 4 17 (a) 8 seconds B1 Acceleration = gradient of line = $\frac{12-8}{12-6} = \frac{4}{6} = \frac{2}{3}$ m/s² M1 A1 M2 (c) Distance = area under graph $$= (\frac{1}{2} \times 6 \times 8) + [\frac{1}{2} \times (8 + 12) \times 6] + (8 \times 12) + (\frac{1}{2} \times 16 \times 12)$$ = 24 + 60 + 96 + 96 = 276 m Α1 Total 6 **18** = $$\frac{8^3}{4^2}$$ = $\frac{8 \times 8 \times 8}{4 \times 4}$ = 2 × 2 × 8 = 32 64 128 B1 Total 1 19 $$5y = (4 \times 10^7) + (2 \times 10^6)$$ $5y = (4 \times 10^7) + (0.2 \times 10^7)$ $5y = 4.2 \times 10^7$ $10y = 8.4 \times 10^7$ $y = 8.4 \times 10^6$ M1 M1 A1 Total 3 David is not correct 20 e.g. When $$x = \frac{1}{16}$$: $\sqrt{x} = \sqrt{\frac{1}{16}} = \frac{1}{4}$ $$\sqrt[4]{x} = \sqrt[4]{\frac{1}{16}} = \frac{1}{2}$$ $\frac{1}{4} < \frac{1}{2}$ making his statement incorrect M1 **A1** Total 2 [Any value in the interval 0 < x < 1 can be used] **21** (a) $$g(5) = \frac{5+3}{2} = 4$$ $fg(5) = f(4) = 3 \times 4 - 1 = 11$ M1 (b) Let $$g(x) = -2$$ $\frac{x+3}{2} = -2$ $x+3=-4$ $x=-7$ M1 $$x + 3 = -4$$ $x = -7$ Therefore $g^{-1}(-2) = -7$ **A1** Total 4 22 (a) (b) | sin 0° | sin 30° | sin 45° | sin 60° | sin 90° | |--------|---------------|----------------------|----------------------|---------| | 0 | <u>1</u>
2 | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 | B1 $= 24 \times \frac{1}{2}$ = 12 cm² Area $PQR = \frac{1}{2} \times 3 \times 8 \times \sin 45^{\circ}$ $= 12 \times \frac{\sqrt{2}}{2}$ $= 6 \sqrt{2} \text{ cm}^2$ Area $ABC = \frac{1}{2} \times 6 \times 8 \times \sin 30^{\circ}$ M1 M1 Triangle ABC has the larger area **A1** Total 4 **TOTAL FOR PAPER: 80 MARKS**